Webscraping with Python

Carleton University data boot camp - June 24, 2016
Glen McGregor
sushiboy21@gmail.com

In this workshop, we’ll learn how to use the Python programming language to “web scrape” or screen scrape
data. Web scraping is the process of using small computer programs to robotically download large amounts
of data. Python is an easy-to-use language and has very clear syntax. It's also open source and -- this is
important in our industry -- completely free to use.

If you have a Mac, you already have Python installed. You can start using Python simply by typing “Python”
in the Terminal program. You can also edit Python scripts in any text editor, save them with a .py extender,

and run them from the Terminal by typing “python filename.py”

On a Windows computer, you will need to download and install from python.org. You can run your scripts
using the included IDE (integrated development environment).

Today, we’re going to use a web-based version of Python built into the Mac operating system. We can edit
the scripts in any text editor, but the free TextWrangler is the best option. Save the files on the Desktop.

We'll run the files using a program called Terminal, which is built into the Mac and can be launched by
clicking APPLICATIONS>UTILITIES>TERMINAL.

In the Terminal window, change directories to the Destop by typing:
cd ~/Desktop

To launch a Python file you've written, in Terminal type:
python myfile.py

Before we start scraping, we need to learn some basic Python functions. Go to ScraperWiki, choose
CREATE A SCRAPER and then select PYTHON and try these commands.

* Create a numerical variable:
X =1
print x
do some math with the variable
X=X +1
print x

* Create a string variable

my _name = "Bob"

print my_name

concatenate the variable
my_name = my_name + " " + "Smith"
print my name

* Create a while loop

X =0

while x < 10:
print x
X =X+1

* Create a for loop
my_name = "Bob Smith"
for every letter in my name:
print every_letter

* Define a function
def my_function(my_name):
my_sentence = my_name +
print my_sentence

is an enemy of the state

my_function("Dave")
my function("Glen")
my_ function("Fred")

* Use a Regular Expression search to parse a string
import re
full_name = "Glen Edward McGregor"
middle_name = re.search("Glen(.+?)McGregor", full_name)
print middle_name
middle_name = middle_name.group(1)
print middle_name

* Use the built in Python module called urllib2 to download a web page:
import urllib2
our_url = "http://www.ottawacitizen.com”
the_page = urllib2.urlopen(our_url).read()
print the_page

* Save the scraped data to the a data file on your hard disk
import urllib2
our_url = "http://www.ottawacitizen.com”
the_page = urllib2.urlopen(our_url).read()
print the_page

our_file = open("citizen.html","a")
our_file.write(the_page)

Scraping Orders of Canada

If we combine these concepts we have learned so far, we can create a little program that will scrape a
website. We'll scrape the database of people who received Orders of Canada appointments from the
Governor General’s website. You can use this data to build a list of everyone in your community who
received one, or look at regional differences in the way the Orders are awarded to see if your area is under
or over-represented.

First, we need to import the modules we need.
import urllib2
import re

Then we’ll create a function to scrape a page we send it
def our_scraper(our_url):
the_page = scraperwiki.scrape(our_url)
print the_page

Go to gg.ca and navigate through the black bar at the top of the site to find the database by selecting
Honours>Find A Recipient. Then select the Orders of Canada radio button and click search.

The page will generate results using this URL.:
http://gg.ca/honours.aspx?1n=&fn=&t=128&p=&c=&pg=1&types=12

The website is giving us paginated results of 50 names at a time. If we change the URL to set the page

http://www.ottawacitizen.com/
http://www.ottawacitizen.com/
http://gg.ca/honours.aspx?ln=&fn=&t=12&p=&c=&pg=1&types=12

number to 2, we’ll get the next 50 results.
http://gg.ca/honours.aspx?1n=&fn=&t=12&p=&c=&pg=2&types=12

The website also gives us the option of limiting the date range of the search. If we set it to the past three

years, it will look like this:
http://gg.ca/honours.aspx?1n=&fn=&t=128&p=8&c=&pg=1&types=12&advoocat=2012-06-24&
advoocat=2016-06-24

This should give us a ist of about 390 names, or six pages of data.

Now we’ll create a loop in our Python script to scrape that URL, but increase the page number each time it
calls the scrape function

X =1
while x < 10:
url = "http://gg.ca/honours.aspx?1n=&fn=&t=128&p=&c=&pg=" + str(x) +
"&types=12&advoocaf=2012-06-24&advoocat=2016-06-24"
our_scraper(url)
X =X +1

When the script runs, we should see hundreds of lines of HTML code. Yes, it's an ugly mess, because we
are viewing the raw data without it being formatted by a web broswer. That's okay. The data we want in
somewhere in that soup of HTML.

Now we want to create another function that will extract the data we’re looking for in the HTML.

We can use Regular Expressions to extract the data we want from the HTML code, and store this in a
function and save the data to disc:

def parse_text(the_page):
the_page = re.sub("\r","", the_page)

the_page = re.sub("\n","", the_page)

the_page = re.sub(" +"," ", the_page)

for listing in re.finditer('(.+?) </td>
<td>(.+?)</td> <td>(.+?)</td> </tr>', the_page):
name = listing.group(1)
city = listing.group(2)
award = listing.group(3)
print name, city, award
line = name + "\t" + city + "\t" + award + "\n"
f = open("orders.txt","a")
f.write(line)

http://gg.ca/honours.aspx?ln=&fn=&t=12&p=&c=&pg=1&types=12
http://gg.ca/honours.aspx?ln=&fn=&t=12&p=&c=&pg=

The entire script should look like this:

import urllib2
import re
import time

def parse_text(t
the_page
the_page
the_page

for listin
<td>(.+?)</td> <
name

city

he_page):
re.sub("\r","", the_page)

re.sub("\n","", the_page)

re.sub(" +"," ", the_page)
g in re.finditer('(.+?) </td>
td>(.+?)</td> </tr>', the_page):

= listing.group(1)

= listing.group(2)

award = listing.group(3)

print name, city, award

line

= name + "\t" + city + "\t" + award + "\n"

f = open("orders.txt","a")
f.write(line)

def our_scraper(
req = urll
req.add_he

url):
ib2.Request(url)
ader('User-Agent', 'Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT

6.09) If webscrape causes problems, call Glen McGregor 613.235.6685")

response =

the_page =
#print the
parse_text

X =1
while x < 10:
url = "htt

urllib2.urlopen(req)
response.read()

_page
(the_page)

p://gg.ca/honours.aspx?1n=&fn=&t=12&p=&c=&pg=" + str(x) +

"&types=12&advoocaf=2012-06-24&advoocat=2016-06-24"

our_scrape
X =X+ 1

r(url)

time.sleep(1)

